RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2015

FIRST YEAR

Date : 21/05/2015 Time : 11 am - 2 pm COMPUTER SCIENCE (Honours) Paper : II

Full Marks : 75

 (1×5)

[Use a separate Answer Book for each group]

<u>Group – A</u>

Answer **any one** questions from the following :

1.	Su D	appose DATA is a sorted array with N elements and ITEM is a given value to be searched from ATA. Write an algorithm for executing binary search over DATA to find the location of ITEM	
	in	DATA or inserts ITEM in its proper place in DATA if it is not present.	(5)
2.	a)	"Quick sort algorithm is not stable" – Justify.	(2)
	b)	Compare Bubble sort and insertion sort in terms of their time complexities.	(3)
Ar	iswe	er any three questions of the following :	[3×10]
3.	a)	Design a data representation, sequential mapping of n data elements in an array v (1:n) is	
		supplied. n_1 of these data elements are maintained in stack and the remaining $n_2 = n - n_1$ elements are maintained in Queue. Write the algorithm for the above scenario.	(7)
	b)	What are the problems in evaluating an infix expression? What can be the possible solutions?	(1+2)
4.	a)	Consider X and Y as two strings. The characters of the strings are the elements of two singly linked list respectively. Suggest an algorithm to find the first character of string X that is not	
		present in the string Y.	(4)
	b)	Let P be a problem and I & R be two algorithmic solution in which first one is non recursive & second one is recursive. Which solution will you choose and why? Consider all possible cases.	(3)
	c)	Given a linked list of integers of odd length. Give an algorithm to extract the content of the middle node of this given list.	(3)
5.	a)	Suppose a[n][m] be a two dimensional array having n number of rows and m number of columns. Establish an address calculation formulae to compute the location of a[i][j] using	
		row-major order.	(5)
	b)	Design an ADT for Integer.	(5)
6.	a)	Consider the following arithmetic expression P, written in postfix notation:	(4)
		P: 12, 7, 3, -, /,2, 1, 5, +, *, -	
		Use the proper algorithm to evaluate the postfix expression.	
	b)	State the dis-advantages of link list. How can we insert an element in a circular double liked list	
		in O (1) time?	(2+4)
7.	a)	Sort the following array using a stable non-comparison based sorting algorithm.	
		6, 0, 2, 0, 1, 3, 4	(5)
		Give proper illustration in support of your answer.	
	b)	Derive the expression for average case complexity of binary search algorithm.	(4)
	c)	What do you mean by inversion?	(1)

<u>Group – B</u>

Answer any	f <mark>our</mark> quest	ions of the	following :
------------	--------------------------	-------------	-------------

Ansv	ve	r <u>any fou</u>	<u>ir</u> ques	stions	of the	follov	ving :				[4×10]
8. a)	If h is ve	ery sma	all, pr	ove th	at Δ^{n+}	¹ f (x _o	$) \approx h^{n+1} f^{(n-1)}$	$(x_{o})^{+1)}$		(3)
b	b) Find $f(x)$ and hence find f (6) from the following table:										(3+1)
		x :0	1	2	3	4	5				
		f (x): 41	43	47	53	61	71				
с)	What do	o you	mea	n by	interp	olatio	n? In whi	ch case should	d we use Newton's Forwards	
		Interpola	ation?								(1+2)
9. a) Evaluate $y = e^{2x}$ for $x = 0.37$ using appropriate interpolation formula from given following										
		table:									(4)
		x :	0.00	0.10)	0.20		0.30	0.40		
У	' =	e^{2x} :	1.000	1.22	214	1.49	18	1.8221	2.2255		
b)	Give the	geom	etrica	l interj	oretati	on of	Simpson's	$^{1}/_{3}$ rd rule.		(3)
с	:)	Compute bisection	e the p n meth	positiv od, co	ve roo	t of tl o two	he eq decir	uation x ³ – nal places.	-9x + 1 = 0, 1	lying between 2 and 3, by the	(3)
10. a)	Explain	the Ne	wton	-Raphs	son M	ethod	with geom	etrical interpret	ation.	(3)
		Find also	o cond	ition 1	for cor	verge	ency o	f this meth	od.		(2)
b)	Give $\frac{dy}{dx}$	-=1	$\frac{y}{x}$ wh	nen y (2) = 2	2, con	npute y (2.	1), by Euler's I	Modified method, correct up to	
		four deci	imal p	laces,	taking	h = 0).05.				(5)
11. a)) Solve the following system of equations by Gauss-Seidel iteration method correct up to 3									
		significa	nt figu	ires.	-		_	-			(5)
		$x_1 +$	x ₂ +42	$x_3 = 9$)						
		$8x_1 \cdot$	- 3x ₂ +	$-2x_3 =$	= 20						
		$4x_1$	$+ 11x_2$	- X3 =	= 33						
b)	What do	you n	neant	by bas	is? Ex	plain	with exam	ple.		(2)
с)	Solve the	e follo	wing	L.P.P.	graph	ically	/			(3)
		Max	imize	Z = 3	$3x_1 + 4x_2$	x ₂					
		Subj	ject to	x ₁ -	$\mathbf{x}_2 \ge 0,$						
				-x ₁ -	$+3x_2 \le$	3,					
			and	x ₁ , x	$x_2 \ge 0$						
12. a	.)	Find ini Approxi	tial ba mation	asic f 1 meth	èasible 10d.	e solu	tion	to the foll	owing transpor	tation problem using Vogel's	(5+2)

 30
 50

 30
 40

 F_1 60 9 F_2 70 70 8 20 18 F_3 40

7 14 8

Also check whether the solution is optimal, otherwise find the optimal basic feasible solution.

b) Three persons are being considered for three open positions. Each person has been given a rating for each position as shown in the following table:

(3)

Position									
Person	Ι	II	III						
1	7	5	6						
2	8	4	6						
3	9	6	4						
	•								

Find the optimal assignments that the sum of ratings for all three persons be maximum.

13. a) Reduce the following linear programming problem in a standard maximization form (4)

 $\begin{array}{lll} \mbox{Minimize} & Z = 2x_1 - 3x_2 + 5x_3 \\ \mbox{Subject to} & x_1 + x_2 + 6x_3 \le 45, \\ & 4x_1 + 3x_2 = 20, \\ & |\ 2x_2 + 3x_3| \le 75, \\ & x_1, x_2 \ge 0 \mbox{ and } x_3 \mbox{ unrestricted in sign.} \end{array}$

- b) Use two phase method to solve the following
 - L.P.P. Maximize: $Z = 3x_1 x_2$

Subject to: $2x_1 + x_2 \ge 2$, $x_1 + 3x_2 \le 2$, $x_1 \le 4$ and $x_1, x_2 \ge 0$

80參Q

(6)